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AN EFFICIENT INTERMOLECULAR CARBON-CARBON BOND FORMATION 

VIA SmI2-PROMOTED ANION RADICAL ALKYLATIONl) 
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Hakozaki, Higashi-ku, Fukuoka 812, Japan 

Summary: Anion radicals generated from the corresponding ketones with the efficient one electron 
transfer system, SmI2-THF-HMPA, attacked a variety of activated olefins at room temperature 
affording the corresponding addition products in good to excellent yields, some of which are hardly 
accessible by the conventional nucleophilic alkylation of ketones. 

Several methods have been known for intramolecular ketone-olefin reductive coupling.2-5) 

Most of them are, however, not effective to entropically less-favored intermolecular reactions.3c16) 

Recently we found that the addition of HMPA dramatically accelerates the electron transfer process 

of Sm12 in THF,7*8) and now we report that the reduction system (Sm12-THF-HMPA) is highly useful 

also for the generation of ketyls and their intermolecular addition to a variety of activated 

olefins’*l’) under extremely mild conditions. (Eq. 1) 
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X = Ph, CH=CHR, OAc, CH20Ac, TMS, C02R,6e) etc. 

The reactions were carried out as follows: A SmI2-THF solution8) (0.1 mol dmT3, 3 ml) was 

added to a mixture of ketones 11) (0.15 mmol), olefins (0.3 mmol), t-BuOH or &PrOH (0.3 mmol), 

and HMPA12) (0.2-0.3 ml) at room temperature under nitrogen atmosphere. The reactions could 

easily be monitored by the color change from purple 7a) to colorless. After 5 min, a 3% aqueous 

hydrochloric acid solution (4-5 drops), hexane (3 ml), and silica gel (ca. 1 g) was added and 

the resulting mixture was stirred for 5 min. Filtration followed by chromatographic purification 

gave the corresponding coupling products. The results are summarized in the Table. 

Unactivated olefins such as allylbenzene did not react at a11.13) However, conjugated ones 

such as styrene, indene, anthracene, or 1,3-butadiene reacted almost instantaneously to afford the 

coupling products in excellent yields (run l-4). The silyl dienol ether, prepared from methyl vinyl 

ketone, was attacked on its less electronegative site, regioselectively. 

The reactions with some nonconjugated terminal olefinsl*) such as vinyl acetate, 

vinyltrimethylsilane, or allylic acetates also proceeded smoothly (run 6-9), whereas the reactions 

with the electron-rich double bond of ethyl vinyl ether did not 13) in accordance with the general 
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Table. Intermolecular Ketone-Olefin Reductive Coupling with SmI2-THF-HMPA Systema) 

Run Ketone Olefin Product Yield(%)b) 

1 

2 

3 

4 

5 

6 

7 

8e) 

9 

10 

APh PhxPh 97 

Ph- 

HO Ph 

& 0 0 

.,A + Ph& 

: 1 )C) 

Phl;c, 

OH 

0 

85 

95 

99 

V 
OTMS 

49d) 

AOAc Ph&OAc 62 

ATMS PhzTMS 

/VOAc phx + Ph/&?OAc 

( 79 : 21 )C) 

OAc ph& + PhqoAc 

( 26 : 74 )‘) 

APh 
WPh 

93 

79 

88 

71 

a) The reactions were carried out at room temperature for 5 min under an atmosphere of nitrogen. 

For the standard procedure, see the text. b) isolated yield. c) Determined by ‘H NMR (400 MHz) 
analysis. d) After acidic workup. e) Inverse addition procedure without proton source. See the 
texta 
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trend of the reactivity of alkyl radicals having high SOMO levels. loa) The high reactivity of 

vinylsilane as a radical acceptor is attributable to the property of silicon atom which may stabilize 

the radical at its a-position through p-o* interaction. 15) The unusually high reactivity of allylic 

acetates in the present reaction may be explained by considering the extra activation of the double 

bond by the coordination of the acetoxyl group to highly oxophilic samarium(II1) ion. 

The present reaction seemed to proceed through successive two electron transfer process 

(route a in Scheme I); the ketyl formation followed by its addition to the double bond yielding an 

alkyl radical, which then accepts one more electron to produce an anion species. Therefore, the 

presence of a good leaving group at @position of the carbanion (e.g. Y = OAc) was expected to 

cause B-elimination to yield the allylated product. ‘@ In fact, such elimination was observed in the 

reaction of run 9. However, substantial amount of the non-eliminated product (6 -acetoxy alcohol) 

was formed even when a ketone was added to a solution of ally1 acetate and Sml2 in THF (inverse 

addition) in the absence of a proton source (run 8), where exclusive @elimination is highly expected. 

This fact seems to indicate that the hydrogen abstraction (route b) is competing with the sencond 

electron transfer (route a). 

Scheme 1. 
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It is noteworthy that the neutral compounds such as silyl dienol ether, vinyl acetate, or allylic 

acetates can be used as a homoenolate anion equivalent (run 5), 6-acetoxy anion equivalent (run 6), 

or y-acetoxy anion equivalents (e.g. run 9), respectively, which are not easily accessible by the 

conventional methodologies. 17) Because of the extremely mild reaction conditions, even an easily 

enolizable ketone (2-indanone) afforded the alkylated product in good yield (run 10). 
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